
GSOC2020
Release 0.0.1

Aug 30, 2020

Contents:

1 Motivation 3

2 Content 5
2.1 How to use . 5
2.2 Function introduction . 8
2.3 Theory and equation for response time analysis in different environment 12
2.4 Plan and milestone . 14
2.5 Contribute to the community . 15
2.6 Repositories . 15
2.7 Future plan . 15
2.8 References . 16

i

ii

GSOC2020, Release 0.0.1

Contents: 1

GSOC2020, Release 0.0.1

2 Contents:

CHAPTER 1

Motivation

I have been working on RTA related field for the past 1.5 years during my master program, and this time GSoC
provides me an opportunity to extend that knowledge into more detail and complicated with a great mentor/supervisor.
Prior to this GSoC, I only know 1 method to calculate response time of a task in unicore using recurrence relation.

However, that method is even older than me, and not very optimal in my opinion. I want to find a faster, more
optimal way to calculate response time where all task would meet it deadline by configure its preemptive type and its
environment. Furthermore, APP4MC with Amalthea model already have those preemption properties needed for the
implementation, this reduced greatly the orientation time needed to get familiar with new platform/software since I
have already used it since 2019

This led me to my decision choosing this topic: Non-Preemptive / Limited preemptive in Response Time Analysis

With all the software related material sorted out, all I needed to do left is to find how to calculate response time in 2
different environments: non-preemptive, and limited preemptive.

3

GSOC2020, Release 0.0.1

4 Chapter 1. Motivation

CHAPTER 2

Content

2.1 How to use

First of all, you will need to clone the big repo from this link

—> https://git.eclipse.org/c/app4mc/org.eclipse.app4mc.tools.git/ <—

5

https://git.eclipse.org/c/app4mc/org.eclipse.app4mc.tools.git/

GSOC2020, Release 0.0.1

Here is the ssh html location if you can’t find it

You need to sign up an eclipse account to be able to clone it though.

Check out the tag gsoc20MPRTAFinal.

This is the tag that contains the GSoC2020 implementation by the time the Project is submitted. It may be merged to
master soon, too.

The content of this tag maybe updated after GSoC submission, I will keep this document updated if more work is done
regard this method.

1. Under responseTime-analyzer > plugins > src >. . . > gsoc_rta folder

You will find NPandPRta class. This is the implementation source file. One can calculate task’s response time in
different environment using this.

1. Under responseTime-analyzer > plugins > src >. . . > gsoc_rta >’test’ folder, there is NPandPNumerical class.

This is a numerical example on how functions/equations used in ‘NPandPRta’ work.

1. Under responseTime-analyzer > plugins > src >. . . > gsoc_rta folder

Blocking is also located here, using this will allow you to calculate local and global blocking time of task

Check out the Implementation functions part if you want to know what functions is used for

6 Chapter 2. Content

GSOC2020, Release 0.0.1

2.1.1 NPandPRTA

Important remarks:

• In this implementation, the function allow all higher priority task in the same core to be able to preemp lower
priority task at runnable bound. No preemption threshold is implemented here. The implementation for coop-
erative part used the equation 12 in this ref, but with the change of j:P_j > P_i, not j:P_j > \theta_i Preemption
threshold did prove to be superior in several research in response time analysis. However the main focus of this
project is the cooperative preemption, not threshold. This is one of the main future work if I ever return to this
topic.

There is something need to be mentioned before you try using this class, it is created based on WATERS2019 model,
the functions are tested using that model. But you should be able to ultilize this class without many problem as long
as you provided 3 input parameters:

• Amalthea model - The model that you will use to ultilize this method, this should be given when you create the
class object

• Integer array (ia) - This is a representation of how task is allocated to cores, the location of each element
represent task, and the value represent core. I.e. {0,2,3,1,1,2} : first task is assigned to first core of the model,
2nd task is assigned to 3rd core, 3rd task is assigned to 4th core and so on

• Task - the task you want to calculate its response time

Also additionally there are 3 other parameters:

• executionCase : TimeType.WCET - just put this like this, since you would want to calculate worst case response
time most of the time, change to BCET if you want something different.

• pTypeArray: a customized array that you can use to define tasks’ preemption type. Leave null if don’t use.
Check javadoc for more info.

• usePtypeArray: boolean variable to announce whether you want to use pTypeArray or not. Leave false if don’t
use.

Below are the important functions that you will probably use most of the time. For the list of all function, refer to the
javadoc, Implementation functions or open the class, I left lots of comment there

getRTAinMixedPreemptiveEnvironment

Calculate response time of task in mixed environment. Drop the task, the integer mapping array, and the model (again
this class is made mainly for WATERS2019 derived model, but it should work on other as well) and you get your
response time. I also opt in an option where you can input your own preemptive type array. Where you can change
task’s preemptive type without changing it in the model.

setSchedubilityCheck

This function set a boolean variable where you can enable/disable schedubility check. Which means if you set to false.
Every RTA functions will return the value without checking whether that response time bigger than task’s period or
not.

getResponseTimeViaLevelI

Calculate resposne time of task in preemptive environment via level-i busy window technique. Pretty vanilla/basic
implementation.

getResponseTimeViaRecurrenceRelation

Calculate resposne time of task in preemptive environment via recurrence relation. Again very basic execution of how
response time is calculated Should give the same result as response time level-i.

getPureExecutionTime

2.1. How to use 7

http://algo.ing.unimo.it/people/marko/papers/WATERS16.pdf

GSOC2020, Release 0.0.1

Using the well-known semantics, where task is run as follow: READ -> EXECUTION -> WRITE Calculate all of the
element from each step, sum all of them and we have task’s execution time.

2.1.2 Blocking

<Blocking.java>

Blocking analysis, calculate blocking time of semaphore(critical section) when they are exist, or else calculate time
other tasks have to wait due to global resource occupancy (task had to wait because other task is reading/writing label)
) Same as the NPandPRta.java, this class also created based on WATER 2019 model.

Again I only listed important/useful function. For more info, please refer functions’ javadoc and the implementation
functions part for more details

getGlobalBlockingTime

Calculate task’s global blocking time (time blocked by task from other cores) due to semaphore lock. If there is no
semaphore, the function will calculate blocking time due to resource being read/write by other task. The blocking
policy is Priority Ceiling Protocol FYI

getLocalBlockingTime

Same with getGlobalBlockingTime, but this time we calculate blocking time due to local task (task within same core)

2.2 Function introduction

2.2.1 Function inside the class NPandPRTA and its usage:

setSchedubilityCheck(boolean schedubilityCheck)

set to false will return RTA result without checking its schedubility (only check core ultilization). This is used to avoid
return 0 for task’s RT that exceed its period/deadline. Mainly use for test class. Recommend to set it to true when
partitioning

getRTAinMixedPreemptiveEnvironment(Task thisTask, int[] ia, TimeType executionCase,
→˓int[] pTypeArray, boolean usePtypeArray):

calculate task’s response time in different environments: fully preemptive, non-preemptive, deffered preemptive, and
a mixed of all (core have tasks with different preemptive type). pTypeArray is preemptive type array for task, used
when developer want to do shuffle preemptive type via code rather than edit the model. -Array same length with
int[]ia array. index value meaning : 0 = preemp, 1 = non-preemptive, 2 = cooperative type -Set to null when use
model’s configurated preemtive type boolean usePtypeArray set to true if use pTypeArray Mechanism within
this class

Step 1: determine what preemptive type thisTask is
Step 2: find out whether there is blocking from lp task (cuz np/c type task)
Step 3: choose the method by these criteria

- if (taskType == preemp/cooperative) && (blockingTime == 0)
=> use normal level-i (getResponseTimeViaLvI)

→˓ (1)
- if (taskType == preemp/cooperative) && (blockingTime !=0)

=> use level-i with preemptive mixed environment
→˓(getPreempCoopMixedTaskRTA) (2)

finishing time here is different than the above
finishingTime = startTime + execution time + preemption time

(continues on next page)

8 Chapter 2. Content

GSOC2020, Release 0.0.1

(continued from previous page)

preemption time = time thisTask get preempted by other
→˓higher priority task in the same core.

- if (taskType == non-preemp))
=> use level-i with blocking (getNonPreemptaskRA)

→˓ (3)
blockingTime doesn't matter here since even if there is no

→˓blocking time, the equation still hold true
important part is taskType is non-preemp which make

→˓finishingTime = startTime + execution time;

getResponseTimeViaRecurrenceRelation(Task thisTask, int[] ia, final TimeType
→˓executionCase):

calculate response time of task using classic recurrence relation method.

getResponseTimeViaLvI(Task thisTask, int[] ia, TimeType executionCase):

calculate response time of task using level-i method (window technique).

getNonPreemptaskRTA(Task thisTask, int[] ia, TimeType executionCase, int[] pTypeArray,
→˓ boolean usePtypeArray):

when task is non-preemptive type. Response time will be calculated via level-i technique Since task is non-preemptive
-> once it start, it doesn’t stop. Our goal here is to calculate task’s start time .Cuz task’s finishing time =
start time + execution time . We can derive response time by finishing time - kPeriod

getLowerPriorityBlockingTime(Task thisTask, int[] ia, TimeType executionCase, int[]
→˓pTypeArray, boolean usePtypeArray):

time thisTask would be blocked by lower priority task. Mechanism here is to scan all lower priority tasks
(lpTask) that are allocated in the same core with thisTask. Then check their preemptive type, lpTask only
blockthisTask if they are non-preemptive or cooperative. thisTask only get blocked once, so we take the
longest time that task could be block by lpTask (i.e lpTask_1 block 10ms, lpTask_2 block 20ms then return 20ms as
blocking time)

getPreempCoopMixedTaskRTA(Task thisTask, int[] ia, TimeType executionCase, int[]
→˓pTypeArray, boolean usePtypeArray)

When task is not non-preemptive type and under a mixed or cooperative environment . Response time will be calcu-
lated via level-i method. This time our calculation is not only focus on start time but also finishing time. Finishing
time = start time + execution time + preemption by higher priority task. And after this response time = finishing time
- kPeriod.

getPureExecutionTime(Task thisTask, int[] ia, final TimeType executionCase):

Label access Read + ticks/executions need + Label access Write. No blocking here.

getExecutionTime (Task thisTask, int[] ia, final TimeType executionCase):

getPureExecutionTime + blocking. Contention, Copyengine, global blocking etc. . . can be added here.

getUltilizationCheck(List<Task> groupTask, int[] ia, TimeType executionCase):

check whether it is possible to shove a group of task together in one core. return true when core ultilization value is
less than 100%.

2.2. Function introduction 9

GSOC2020, Release 0.0.1

2.2.2 Function inside the class Blocking and its usage:

private void setUpFlagArrayAndHashMap(final int[] iap):

This function is used to to figure out whether any task assigned to CPU trigger GPU task or not. And if it does, then
the shooting task (cpu task) will have more labels (comes from shot task, or GPU task) Rather complicated for this
part. If there aren’t any of those behavior then it will return nothing. So don’t worry here

private List<Task> groupTask(final Task thisTask)

private List<Task> groupTaskWithIA(final Task thisTask, int[] ia)

private List<Task> groupOtherTask(final Task thisTask) {

private List<Task> groupTaskFromOtherCore(final Task thisTask, int[] ia)

Functions work as its name, return a list of task that located inside the same core or other cores. Reason behind 2
function groupTask and groupTaskWithIa is because groupTaskWithIA will derive from an input integer array, the
other use input integer array when we initialize the class. Result is same, but I will use the groupTaskWithIA when I
want to multi thread it.

private List<Task> taskSorting(final List<Task> taskList)

private List<Label> labelSortingBySize(List<Label> labelList)

task sorting will sort tasks by Rate Monotonic Scheduling (RMS) method, highest priority go first.

labelSortingBySize will rearrange label in the list by its size, biggest go first.

private HashMap<Task, List<Label>[]> getReadWriteLabelHash(Task thisTask)

put a task in, return a hashmap contain task as key and 2 list as value. Should look like this

Hash = task, [readList,WriteList]

private List<Label> getAccessedLabelListWithDuplicate(Task thisTask)

Same with getReadWriteLabelHash, but instead of a hash map with 2 list value. I put everything in a list, don’t care
whether there is duplicate values or not (read and write the same label)

private List<Label> getDuplicateBetweenListAndSet(List<Label> thisList, Set<Label>
→˓thisSet)

Simple tool for me to get whatever a list and a set have in common, similar with list.retainAll()

private List<Task> getLabelCalledTaskSet(Label thisLabel)

Get a list of task that called this specific label, use when we need to identify which task is accessing the same label
when finding global/local blocking time.

private Time getLocalCrossingLabelAccessTime(Task thisTask, List<Task>
→˓sameCoreTaskList)

get local label access by lower priority tasks in the same core. CrossingLabel means several task access same
label, visually crossing each other. Just my intepretation here. Not a technical term

private Time getGlobalCrossingLabelsAccessTime(Task thisTask, List<Task>
→˓diffCoreTaskList)

10 Chapter 2. Content

GSOC2020, Release 0.0.1

Same with getLocalCrossingLabelAccessTime, only this time we concern about task located in other cores

private Time getLabelAccessTimeWithTask(Task thisTask, final Label thisLabel,
→˓TimeType executionCase)

Mainly use for localCrossingLabelAccessTime Check label access time for thisLabel with thisTask Automatically
check whether it is read/write access from thisTask to thisLabel, take the longer one if both occured

private Time getLabelAccessTime(final Task thisTask, final Label thisLabel, final
→˓LabelAccessEnum thisType, final TimeType executionCase)

calculate read/write label access of thisTask on thisLabel Use for globalCrossing and getLabelAccessWithTask above.
Pretty basic function in RTA

public List<Semaphore> getSemaphore(final Task thisTask)

Use to locate semaphore in task, and put them in a list to cross checking later when calculate global/local blocking

public Time getSemaphoreTime(final Task thisTask, final Semaphore thisSema, final
→˓TimeType executionCase)

get critical section length that guarded by Semaphore thisSema for thisTask Calculated by get labelAccess time + ticks
(if avaiable) between request and release semaphore.

private List<Task> groupSemaphoreLinkedTask(final Task thisTask)

Get a list of task that have same semaphore(s) with thisTask, use for global blocking since we may have hundreds of
cores

public Time maxPriorTaskBlockingTime(final Task thisTask, final TimeType
→˓executionCase)
public Time otherPriorTaskBlockingTime(final Task thisTask, final TimeType
→˓executionCase)
public Time otherPriorTaskBlockingTime(final Task thisTask, final TimeType
→˓executionCase)
private Time normalTaskBlockingTime(final Task thisTask, final TimeType executionCase)

normal prior task PCP calculation, for reference and testing. Didn’t use for any of the implementation. Not important.

public Time getLocalBlockingTime(final Task thisTask, final TimeType executionCase) {

Calculate task’s global blocking time (time blocked by task from other cores) due to semaphore lock. If there is no
semaphore, the function will calculate blocking time due to resource being read/write by other task. The blocking
policy is Priority Ceiling Protocol FYI

public Time getGlobalBlockingTime(final Task thisTask, final TimeType executionCase) {

Same with getGlobalBlockingTime, but this time we calculate blocking time due to local task (task within same core)

private int getGPUindex(Amalthea modelp) {

This is a generic approach on how we locate GPU task in the integer array used for mapping. Need to be modify if
task failed when executed.

Done

2.2. Function introduction 11

GSOC2020, Release 0.0.1

2.3 Theory and equation for response time analysis in different envi-
ronment

• Table of Notation for Basic RTA

Description Symbol
Task i 𝜏𝑖
WC Response time 𝑅+

𝑖

WC Execution time 𝐶+
𝑖

Period 𝑇𝑖

Priority 𝑃𝑖

2.3.1 Fully preemptive environment

• Response time analysis using recurrence relation

Equations of this part comes from [4]. Check Reference for the paper/research

Equation 1: 𝑅+
𝑖 = 𝐶+

𝑖 +
∑︀

𝑗:𝑃𝑗≥𝑃𝑖

⌈︂
𝑅+

𝑖−1

𝑇𝑗

⌉︂
𝐶+

𝑗 |

Numerical example: Assume a task (𝐶+
𝑖 , 𝑇𝑖) set {(1,3), (1,5), (1,6), (2,10)}

𝑅0
1 = 𝑅1

1 = 𝐶1 = 1 (task with highest priority, hence response time = execution time)

𝑅0
2 = 𝐶2 + 𝐶1 = 2

𝑅1
2 = 𝐶2 +

⌈︁
𝑅0

2

𝑇1

⌉︁
𝐶+

1 = 1 +
⌈︀
2
3

⌉︀
1 = 2

𝑅1
2 = 𝑅0

2 = 2. No further exploration can be done here, 𝜏2 response time 𝑅2 = 2. This mean, we stop when previous
iteration value equal the current iteration value, this value will be the response time of task.

• Response time analysis using level-i busy window,

In preemptive environment, beside recurrence relation method, there is another way to calculate task response time
(RT) by calculate response time of several instance of task during its busy period, and pick the longest one among
them. Equation from this part comes from [2].

Equation 2: Level-i active period (busy window)

𝐿𝑖 =
∑︀

𝑗:𝑃𝑗≥𝑃𝑖

⌈︁
𝐿𝑖

𝑇𝑗

⌉︁
𝐶𝑗

Equation 3: The number of 𝜏2’s instances to check are:

𝐾𝑖 =
⌈︁
𝐿𝑖

𝑇𝑖

⌉︁
Equation 4: The finishing time of k-instance

𝑓𝑘
𝑖 =

∑︀
𝑗:𝑃𝑗>𝑃𝑖

⌈ 𝑓𝑘
𝑖

𝑇𝑗
⌉𝐶𝑗 + (𝑘 − 1)𝐶𝑖

Equation 5: From finishing time, we can calculate response time simply since: Response time = finishing time - arrival
time. Where arrival time = k-instance’s period.

𝑅𝑘
𝑖 = 𝑓𝑘

𝑖 − (𝑘 − 1)𝑇𝑖

12 Chapter 2. Content

GSOC2020, Release 0.0.1

Response time of 𝜏𝑖 is the maximum among all k-instances.

For numerical example, I recommend you check “tutorial on real-time scheduling” by Emmanual Grolleau, his papered
is where I check and back test the code flow. First 4 pages is enough to understand how to use level-i busy window.

2.3.2 Non-preemptive environment

For non-preemptive environment, recurrence relation method is not doable, only busy window is usable as far as I
know.

We reuse equation 2, 3 to get total number of k instance, only different is we will calculate arrival time, then find
finishing time by arrival time + execution time, and use equation 5 for response time:

Equation 6: release time 𝑠𝑘𝑖 of 𝜏𝑘𝑖

𝑠𝑘𝑖 =
∑︀

𝑗:𝑃𝑗>𝑃𝑖
(⌊ 𝑠𝑘𝑖

𝑇𝑗
⌋+ 1)𝐶𝑗 + (𝑘 − 1)𝐶𝑖

Then simply finishing time 𝑓𝑘
𝑖 = 𝑠𝑘𝑖 +𝐶𝑖 since it is non-preemptive, response time can be calculate again by equation

5.

2.3.3 Limitted preemptive (or cooperative) environment

Window technique again proved to be useful in this scenario, this time we need to introduce blocking time, which is
the largest execution time of lower priority runnable (since cooperative is runnable bound). All equation in from this
part is from paper [1], check out references tab for more info.

Blocking time

𝐵𝑖 = 𝑚𝑎𝑥𝑗:𝑃𝑗<𝑃𝑖(𝐶𝑗 , 𝑟)

Reuse equation 2,3 again, but include blocking time 𝐵𝑖 into equation 2 to find out proper busy period

𝐿𝑖 = 𝐵𝑖 +
∑︀

𝑗:𝑃𝑗≥𝑃𝑖

⌈︁
𝐿𝑖

𝑇𝑗

⌉︁
𝐶𝑗

Task 𝜏𝑖 finished time can be derived from equation 4, with a touch of blocking time

𝑓𝑘
𝑖 = 𝐵𝑖 +

∑︀
𝑗:𝑃𝑗>𝑃𝑖

⌈ 𝑓𝑘
𝑖

𝑇𝑗
⌉𝐶𝑗 + (𝑘 − 1)𝐶𝑖

And here we can apply equation 5 for response time, pretty simple right?

Notice here: This is true iff we assume all higher priority task can preempt lower priority task as soon as its arrival
time come. If you want to introduce some preemption threshold 𝜃𝑖, follow the below equations.

Equation 7: get task’s release time:

𝑠𝑘𝑖 = 𝐵𝑖 +
∑︀

𝑗:𝑃𝑗>𝑃𝑖
(⌊ 𝑠𝑘𝑖

𝑇𝑗
⌋+ 1)𝐶𝑗 + (𝑘 − 1)𝐶𝑖

Equation 8: get task’s finshing time:

𝑓𝑘
𝑖 = 𝑠𝑘𝑖 +

∑︀
𝑗:𝑃𝑗>𝜃𝑖

(⌈ 𝑓𝑘
𝑖

𝑇𝑗
⌉ − (⌊ 𝑠𝑘𝑖

𝑇𝑗
⌋+ 1))𝐶𝑗

And then applied the same equation 5 for response time.

developer note: sorry I didn’t include any numerical example in these case, it’s rather lengthy to do so, but if you
understand how level-i work, these equation wouldn’t be difficult at all

2.3. Theory and equation for response time analysis in different environment 13

GSOC2020, Release 0.0.1

2.4 Plan and milestone

2.4.1 Phase 1

May 4 - June 23, 2020 (Community Bonding Period, Coding part 1)

• Structuring the implementation process:

1. Non-preemptive response time analysis (RTA)

2. limited/cooperative RTA

3. a mixed of non-preemptive, limited/cooperative and preemptive RTA

• Retesting level-i and recurrence relation method in calculating response time

• Implementing non-preemptive RTA in APP4MC

The commits can be tracked via this bug from bugzilla :

This phase is mainly for getting familiar with level-i busy window technique in RTA which contribute quite a lots in
further exploration regard to RTA, at least non-preemptive RTA was completed during this phase

2.4.2 Phase 2

June 24 - July 21 (Coding - Part 2)

• Implement cooperative RTA in APP4MC

• Create test classes for both non-preemptive and cooperative

• Attempt on mixed preemptive environment RTA

The commits can be tracked via this bug from bugzilla :

After this phase, the skeleton or outline of how data flow and how response time analysis in different cases is formed.
From getting info from model and mapping array to source out what environment input task’s in, and finally decide
what equation/function is used to give out the best solution.

2.4.3 Phase 3

July 22 - August 18 (Coding - Part 3)

• Implement mixed preemptive environment RTA

• Adding getting preemptive type from an customized array, similar with mapping array for the class. This will
remove unnecessary time for mouse clicking in order to change preemption type in model explorer

• Implement blocking analysis, based on semaphore and Priority Ceiling Protocol

• Adding blocking due to shared resources if no semaphore/critical section is available within model

• Create test classes, adding javaDoc, documentation

The commits can be tracked via this bug from bugzilla :

Implementation done here, tough time with all the additioning stuff but was fun and interesting.

14 Chapter 2. Content

https://bugs.eclipse.org/bugs/show_bug.cgi?id=562791
https://bugs.eclipse.org/bugs/show_bug.cgi?id=562792
https://bugs.eclipse.org/bugs/show_bug.cgi?id=562793

GSOC2020, Release 0.0.1

2.5 Contribute to the community

There are several paper about response time analysis but not many open source code that developer can use as reference
or implementation can be found in the internet. This project is my contribution to the open source community in this
matter. In this project, you can find method to calculate response time in different preemptive environment: non-
preemptive, cooperative, or a mixed of the above.

The class NPandPRta can be used and modify as developer desire, I left lots of comments inside the code itself
for whoever going to ultilize that for him/herself. Also for whoever want to approach level-i but don’t have much
knowledge about mathematics, NPandPRtaNumerical is the class you should dig in. It consist of the same mech-
anism/algorithm with NPandPRta but input value isn’t derived from the model but from an array. Drag down to
whatever function you want to use to edit that input value, or leave as it is. Whatever help you understand the data
flow and the equation :D.

Happy coding, don’t push yourself too harsh fellow developers.

2.6 Repositories

2.6.1 RTA Implementation in eclipse

Click here -> eclipse repo <-

2.6.2 Readthedoc repo

Click here -> github repo <-

2.7 Future plan

2.7.1 Implementing preemption threshold

This already mentioned in [1] while researching for cooperative preemption type and proven to be superior than
without using preemption threshold. I would like to implement a threshold variable for each task, prefered a
generic/dynamic threshold where each task set (several tasks that located in 1 core) element will have different thresh-
old to ensure its response time alway meet its deadline.

2.7.2 Investigate different scheduling method

The current implementation use Rate Monotonic Scheduling to decide task’s priority, it would be cool to see what
would happen with the same task set but different scheduling method such as EDF, Fixed priority, round robin etc.

2.7.3 Visualize busy window

Resposne time analysis using busy window method is difficult and annoying just by looking at the equation, visualize
the busy window and how each of the task’s instances look like within it will help immensely to whoever trying to get
used to with the method

2.5. Contribute to the community 15

https://git.eclipse.org/c/app4mc/org.eclipse.app4mc.tools.git/log/?h=app4mc0.9.8/gsoc20npRTA
https://github.com/zero212/GSOC2020Doc

GSOC2020, Release 0.0.1

2.8 References

My implementation couldn’t been finished without these research papers and their authors.

[1]: Ignacio Sanudo, Paolo Burgio and Marko Bertogna “Schedulability and Timing Analysis of Mixed Preemptive-
Cooperative Tasks on a Partitioned Multi-Core System”.

[2]: Emmanuel Grolleau, “Tutorial on real-time scheduling”.

[3]: Robert Höttger, Junhyung Ki, The Bao Bui, Burkhard Igel and Olaf Spinczyk “CPU-GPU Response Time and
Mapping Analysis for High-Performance Automotive Systems”.

[4]: Mathai Joseph and Paritosh Pandya, 1986 “a standardized response time analysis methodology”.

[5]: John P. Lehoczky, “Fixed Priority Scheduling of Periodic Task Sets with Arbitrary Deadlines”

If you have any question, contact me via : the.bui003@stud.fh-dortmund.de

Happy coding

16 Chapter 2. Content

mailto:the.bui003@stud.fh-dortmund.de

	Motivation
	Content
	How to use
	Function introduction
	Theory and equation for response time analysis in different environment
	Plan and milestone
	Contribute to the community
	Repositories
	Future plan
	References

